Goto

Collaborating Authors

 Scripts & Frames



Episodic Memory in Lifelong Language Learning

Neural Information Processing Systems

We introduce a lifelong language learning setup where a model needs to learn from a stream of text examples without any dataset identifier. We propose an episodic memory model that performs sparse experience replay and local adaptation to mitigate catastrophic forgetting in this setup. Experiments on text classification and question answering demonstrate the complementary benefits of sparse experience replay and local adaptation to allow the model to continuously learn from new datasets. We also show that the space complexity of the episodic memory module can be reduced significantly ( 50-90%) by randomly choosing which examples to store in memory with a minimal decrease in performance. We consider an episodic memory component as a crucial building block of general linguistic intelligence and see our model as a first step in that direction.


Efficient Generation of Structured Objects with Constrained Adversarial Networks

Neural Information Processing Systems

Generative Adversarial Networks (GANs) struggle to generate structured objects like molecules and game maps. The issue is that structured objects must satisfy hard requirements (e.g., molecules must be chemically valid) that are difficult to acquire from examples alone. As a remedy, we propose Constrained Adversarial Networks (CANs), an extension of GANs in which the constraints are embedded into the model during training. This is achieved by penalizing the generator proportionally to the mass it allocates to invalid structures. In contrast to other generative models, CANs support efficient inference of valid structures (with high probability) and allows to turn on and off the learned constraints at inference time. CANs handle arbitrary logical constraints and leverage knowledge compilation techniques to efficiently evaluate the disagreement between the model and the constraints. Our setup is further extended to hybrid logical-neural constraints for capturing very complex constraints, like graph reachability. An extensive empirical analysis shows that CANs efficiently generate valid structures that are both high-quality and novel.


Learning Structured Representations with Hyperbolic Embeddings

Neural Information Processing Systems

Most real-world datasets consist of a natural hierarchy between classes or an inherent label structure that is either already available or can be constructed cheaply. However, most existing representation learning methods ignore this hierarchy, treating labels as permutation invariant. Recent work [Zeng et al., 2022] proposes using this structured information explicitly, but the use of Euclidean distance may distort the underlying semantic context [Chen et al., 2013]. In this work, motivated by the advantage of hyperbolic spaces in modeling hierarchical relationships, we propose a novel approach HypStructure: a Hyperbolic Structured regularization approach to accurately embed the label hierarchy into the learned representations. HypStructure is a simple-yet-effective regularizer that consists of a hyperbolic tree-based representation loss along with a centering loss, and can be combined with any standard task loss to learn hierarchy-informed features.


Linking In-context Learning in Transformers to Human Episodic Memory

Neural Information Processing Systems

Understanding connections between artificial and biological intelligent systems can reveal fundamental principles of general intelligence. While many artificial intelligence models have a neuroscience counterpart, such connections are largely missing in Transformer models and the self-attention mechanism. Here, we examine the relationship between interacting attention heads and human episodic memory. We focus on induction heads, which contribute to in-context learning in Transformer-based large language models (LLMs). We demonstrate that induction heads are behaviorally, functionally, and mechanistically similar to the contextual maintenance and retrieval (CMR) model of human episodic memory.


Brain Inspired Adaptive Memory Dual-Net for Few-Shot Image Classification

arXiv.org Artificial Intelligence

Few-shot image classification has become a popular research topic for its wide application in real-world scenarios, however the problem of supervision collapse induced by single image-level annotation remains a major challenge. Existing methods aim to tackle this problem by locating and aligning relevant local features. However, the high intra-class variability in real-world images poses significant challenges in locating semantically relevant local regions under few-shot settings. Drawing inspiration from the human's complementary learning system, which excels at rapidly capturing and integrating semantic features from limited examples, we propose the generalization-optimized Systems Consolidation Adaptive Memory Dual-Network, SCAM-Net. This approach simulates the systems consolidation of complementary learning system with an adaptive memory module, which successfully addresses the difficulty of identifying meaningful features in few-shot scenarios. Specifically, we construct a Hippocampus-Neocortex dual-network that consolidates structured representation of each category, the structured representation is then stored and adaptively regulated following the generalization optimization principle in a long-term memory inside Neocortex. Extensive experiments on benchmark datasets show that the proposed model has achieved state-of-the-art performance.


Echo: A Large Language Model with Temporal Episodic Memory

arXiv.org Artificial Intelligence

Research on large language models (LLMs) has shown remarkable performance in domains such as mathematics, programming, and literary creation. However, most studies have focused on semantic memory-based question answering, neglecting LLMs' potential to handle episodic memory (EM)-related queries. This oversight has led to suboptimal performance in applications requiring EM, including emotional companionship, personal AI assistants, and AI teachers. To address this gap, we introduce Echo, a LLM enhanced with temporal episodic memory. We propose a Multi-Agent Data Generation Framework that guides the model in generating multi-turn, complex scenario episodic memory dialogue data (EM-Train). Temporal information is innovatively incorporated into the LLM training process, and Echo is trained using the EM-Train. Furthermore, We develop an EM-Test benchmark specifically designed to evaluate LLMs' episodic memory capabilities. The EM-Test assesses performance across various time spans and difficulty levels, providing a comprehensive evaluation of multi-turn episodic memory dialogues. Our experiments demonstrate that Echo significantly outperforms state-of-the-art LLMs on EM-Test. Additionally, a qualitative analysis reveals Echo's potential to exhibit human-like episodic memory capabilities. We will open-source all datasets, code, and model weights.



Position: Episodic Memory is the Missing Piece for Long-Term LLM Agents

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) evolve from text-completion tools into fully fledged agents operating in dynamic environments, they must address the challenge of continually learning and retaining long-term knowledge. Many biological systems solve these challenges with episodic memory, which supports single-shot learning of instance-specific contexts. Inspired by this, we present an episodic memory framework for LLM agents, centered around five key properties of episodic memory that underlie adaptive and context-sensitive behavior. With various research efforts already partially covering these properties, this position paper argues that now is the right time for an explicit, integrated focus on episodic memory to catalyze the development of long-term agents. To this end, we outline a roadmap that unites several research directions under the goal to support all five properties of episodic memory for more efficient long-term LLM agents.


Emergence of Episodic Memory in Transformers: Characterizing Changes in Temporal Structure of Attention Scores During Training

arXiv.org Artificial Intelligence

We investigate in-context temporal biases in attention heads and transformer outputs. Using cognitive science methodologies, we analyze attention scores and outputs of the GPT-2 models of varying sizes. Across attention heads, we observe effects characteristic of human episodic memory, including temporal contiguity, primacy and recency. Transformer outputs demonstrate a tendency toward in-context serial recall. Importantly, this effect is eliminated after the ablation of the induction heads, which are the driving force behind the contiguity effect. Our findings offer insights into how transformers organize information temporally during in-context learning, shedding light on their similarities and differences with human memory and learning.